If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+20x+2.5=0
a = 16; b = 20; c = +2.5;
Δ = b2-4ac
Δ = 202-4·16·2.5
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{15}}{2*16}=\frac{-20-4\sqrt{15}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{15}}{2*16}=\frac{-20+4\sqrt{15}}{32} $
| 64=-4n+8 | | 16x²+20x+2.5=0 | | -12x-20=-10x-70 | | -12x20=-10x-70 | | 8(1-6a)=104 | | (2/5x)-5=7 | | -6/5v=-12 | | 266=-7(4-6x) | | 16x-20=-14x+110 | | -7(3x-2)+2=-21x+16 | | -2=-5n^2 | | 121-y=170 | | 3(5x-23)=36 | | 1008=(30-2x)(20-2x)x | | 4.8-7.25=x | | -7z-21=42 | | 3k^2=2=0 | | H=-500+5t+23 | | 6=(1/5)*w+(7/5)*w-4 | | 7x-25=4x+4 | | (x-4)/4-x/3=6 | | 42=−7z−21 | | (2x+3)^2=25 | | A(x)=x(400-2x) | | 2=(5p) | | -3(2x-3)=-22 | | X=2(n+9)-5 | | 365=0.09s-5 | | 5x+8-x=20=4x-12 | | x^2−5x+7=0 | | 84=18t2+7t | | ×+y=14000 |